
Teaching ObjecbOriented Programming Using
BETA∗

Jørgen Lindskov Knudsen
Ole Lehrmann Madsen

Claus Nørgaard†

Lars Bak Petersen†

Elmer Sørensen Sandvad†

Computer Science Department
Aarhus University, Ny Munkegade 116

DK-8000 Aarhus C, Denmark‡

April 1990

Introduction

The BETA language is used as a basis in teaching object-oriented program-
ming at Aarhus University. BETA is a modem language that makes it possi-
ble to illustrate a large number of concepts in object-oriented programming.

The approach to teaching object-oriented programming is, however, not iden-
tical to teaching the BETA language. On the contrary it is emphasized that

∗Presented at the 6th Annual Apple European University Consortium Conference, Sala-
manca, Spain, April 18th-20th, 1990.

†Address: Mjølner Informatics ApS, Science Park Aarhus, Gustav Wieds Vej 10, DK-
8000 Aarhus C, Denmark.

‡Personal e-mail addresses: jlknudsen@daimi.dk, olmadsen@daimi.dk, cnor-
gaard@mjolner.dk, lbpetesen@mjolner.dk, essandvad@mjolner.dk

1

teaching object-oriented programming is more than teaching object-oriented
programming languages. Very often people associate object-oriented progam-
ming with programming in a concrete object-oriented programming language,
like Smalltalk. Object-oriented programming and programming in general
should not just be a matter of teaching constructs in a given programming
language. Most text books on programming languages only describe the
technical differences between various language constructs. This implies that
emphasis is often concentrated around features of one language compared to
features of another language. This makes it difficult to discuss the qualitative
difference between languages. The well-known Turing “Tarpit” states that,
on theoretical basis, any computation which can be expressed in one of the
familiar programming languages can also be expressed in any of the other
languages — including Turing machines. This implies that comparison of
languages should be more than a discussion about whether or not a given
construct may be simulated in another language. Furthermore, a “technical”
discussion of programming languages is often lacking arguments about the
programmers perspective on programming. Instead of technical details, it is
often much more fruitful to discuss requirements for supporting one or more
perspectives.

Teaching programming languages should concentrate on the conceptual frame-
work underlying the language. For functional programming, it is natural to
teach the mathematical framework. For object-oriented programming, the
conceptual framework should be discussed. This is not as easy as for func-
tional programming, since the framework for object-oriented programming
has not yet been so fully developed as the framework for functional program-
ming.

When teaching object-oriented programming, the conceptual framework for
object-oriented programming must of course be supplemented with concrete
examples of languages supporting the framework. Here it is important to
select a representative set of languages and not just one language. At Aarhus
University, BETA is used as one of these languages, representing the class
of strongly typed object-oriented languages. The reason is that BETA is a
modern language that includes most of the constructs of the other strongly
typed languages, such as Simula[3], C++[11] and Eiffel[10]. Smalltalk[2] and
Scheme[1] are used to illustrate the other class of languages based on dynamic
type checking.

2

This paper consists of three major sections. Section 1 is devoted to a brief
discussion of the conceptual approach to teaching programming languages.
Section 2 is a brief description of the BETA programming language. Section
3 presents the BETA Macintosh environment.

1 Conceptual Approach to Programming Lan-

guages

The approach to teaching programming languages and especially object-
oriented programming is very much influenced by the perspective you have
on the role of the programming language in the system development process.
In fact this role is a three-way role: as a means for expressing concepts and
structures (conceptual modeling), as a means for instructing the computer,
and as a means for managing the program description. Just focusing on the
role as a means for instructing the computer is far to narrow. In the role for
conceptual modeling, the focus is on constructs for describing concepts and
phenomena. In the role for instructing the computer, the focus is on aspects
of the program execution such as storage layout, control flow and persistence.
Finally, in the role for managing the program description, focus is on aspects
such as visibility, encapsulation, modularity, separate compilation, library
facilities, etc.

Some of the success in teaching programming languages can be traced back
to the emphasis that is put on using these roles as the foundation of the
approach. Here the roles as means for conceptual modeling and prescription
have proven very effective, and to some extent this makes the approach to
teaching programming languages novel. It has been found that restricting the
discussion of programming languages to the role of instruction (or coding)
is far to restrictive, primarily because the end-product of a programming
process (the program) cannot (and should not) be viewed in isolation from
the programming process and thereby the application domain.

A more detailed description of the issues discussed here may be found in [4]
and [8], which also contains references to important work that have influenced
our research and teaching.

3

1.1 Programming Perspectives

Teaching the perspective of object-oriented programming cannot (or should
not) take place in isolation from other perspectives. Extensive parts of the
course should therefore be devoted to programming perspectives as such, and
presentation of various different programming perspectives.

Procedural programming1 is taken as the starting point for the discussion.
Functional/logical programming and object-oriented programming are then
described as two different reactions to several problems related to the concept
of state in procedural programming. In functional/logical programming, the
approach has been to eliminate the concept of state, whereas the approach
taken in object-oriented programming has been to treat the concept of state
as a first-class citizen. In addition various other perspectives such as the
process perspective, the type system perspective and the event perspective
are treated. The latter three perspectives are not treated extensively but
primarily in the context of the other perspectives.

1.2 Object-Oriented Programming

In our approach, object-oriented programming is defined by the following
characterization:

A program execution is regarded as a physical model, simulat-
ing the behavior of either a real or imaginary part of the world.

The object-oriented perspective on programming is in contrast to the above
perspectives that are focusing either on manipulations of data structures or
on mathematical models. The object-oriented perspective is closer to physics
than mathematics. Instead of describing a part of the world by means of
mathematical equations, a physical model is literally constructed. This means
that elements of the program execution are regarded as models of phenomena
and concepts from the real world. Parts of the physical world consists of
material. Paper, plastic, wood, Lego bricks are examples of physical material.
Objects are the computerized material, used to construct the computer based

1To ease the writing, we will use the phrase “. . . programming” interchangeable with
the phrase “the . . . programming perspective”.

4

physical models. The part of the world being modeled is described by the
program. Some of the well-known examples of languages supporting this
perspective are Smalltalk, Beta and C++.

This “definition” cannot be seen in isolation but must be understood in a
broader context (this applies for the other perspectives as well.)

1.3 Theoretical Foundation for Object-Oriented Pro-
gramming

As stated above, the object-oriented perspective must be accessed on basis
of a theoretical foundation and not on basis of specific language constructs.
The theoretical understanding of object-oriented programming which will be
outlined in the following is among others a result of research activities that
the authors have carried out together with a number of other people.

Modeling

In order to clarify the different roles that the programming language plays
in the prosing process, we have to look more closely at that process. The
prosing process may be desks as a modeling process in which several sub-
processes take place.

5

The figure illustrates the
programming process as a
modeling process between
a referent system and a
model system. The refer-
ent system is part of the
world that we are focusing
on in the programming
process, and the model
system is a program ex-
ecution modeling a part
of the referent system on
a computer. The refer-
ent system is the concrete
physical world or some

imagination of a future physical world, and as such it consists only of phe-
nomena. As a characteristic human activity, we create concepts in order
to capture the complexity of the world around us — we make abstractions.
That is, in the referent system, both phenomena and concepts are important.
In the model system, we find elements that model phenomena and concepts
from the referent system.
Objects in a Smalltalk program execution are spicily models ofihysical phe-
nomena in the referent system and the sequence of events generated by the
execution of a methhod is typically a model of a sub-process going on in the
referent system. Concepts in the referent system are modeled by abstrac-
tions such as classes, types, procedures and functions. The program text is
a description of the referent system and in addition it is a prescription that
may be used to generate the model system.

The programming process can now be described in terms of this figure. Dur-
ing the programming process, three sub-processes are taking place: abstrac-
tion in the referent system, abstraction in the model system, and modeling.
Please note that intentionally we do not impose any ordering among the
sub-processes. Abstraction in the referent system is the process where we
are perceiving and structuring knowledge about phenomena in the referent
system with particular emphasis on the problem domain in question. We say
that we are creating problem specific concepts in the referent system. This
process is an integrated part of the system development process. Abstraction

6

in the model system is the process where we build structures that should sup-
port the model we are intending to create in the computer. We say that we
create realized concepts in the model system. Finally, modeling is the process
where we connect the problem specific concepts in the referent system with
the realized concepts in the model system.

Concepts

As discussed above, concepts and abstraction are the key notions in our un-
derstanding of the programming process. It is therefore necessary to discuss
subjects like the notion of concepts and their relations to phenomena, con-
cept understanding, and important aspects of the abstraction process.
A phenomenon is something in the world that has definite, individual ex-
istence in reality or the mind; anything real in itself. What constitutes a
phenomenon is to some degree dependent on the view of the observer. A
concept is a generalized idea of a collection of phenomena, based on knowl-
edge of common properties of the phenomena in the collection. Concepts may
be characterized by three aspects: the designation, extension and intension.
The designation refers to the collection of names under which the concept is
known. The extension refers to the collection of phenomena that the concept
somehow covers, and the intension refers to the collection of properties that
in some way characterize the phenomena in the extension of the concept.

These definitions are deliberately somewhat vague since there are (at least
two) different ways to understand concepts: the Aristotelian view and the
prototypical (or fuzzy) view. Space does not allow an extensive discussion
of these two views — just a short characterization. In the Aristotelian view,
the concepts are rigidly defined, leading to sharp concept borders and rel-
atively homogeneous phenomena in the extension. The prototypical view,
on the other hand, is characterized by blurred concept borders, phenomena
of varied typicality in the extension, and decisionmaking/judgement when a
phenomenon is considered for inclusion in the extension. The prototypical
view is the view that best describes human concept understanding.

As it can be seen above, the prosing process is faced with the problem that
not only do we restrict the precision of our model by only considering a
part of the world (this is a problem studied in system development courses),

7

but equally important, the modeling process has to take into account the
restrictions imposed by modeling a possible prototypicl concept structure
in the referent system into an Aristotelian concept structure in the model
system.

Abstraction

In the process of creating concepts it is useful to identify the three well-known
sub-processes of abstraction: classification, aggregation and generalization.
To classify is to form a concept that covers a collection of similar phenom-
ena. To aggregate is to form a concept by describing the properties of the
phenomena by means of other concepts. And finally, to generalize is to form
a concept that covers a number of more special concepts based on similari-
ties of the special concepts. All three sub-processes have an inverse process,
called exemplification, decomposition and specialization, respectively.

In general the process of creating new concepts cannot just be explained as
consisting of the above sub-functions. In practice the definition of concepts
wit undergo drastic changes. This is similar to the situation with top-down
and bottom-up programming. It is realized by most people that pure top-
down or bottom-up development of programs is rarely possible. The un-
derstanding obtained during the development process will usually influence
previous steps. It is however useful to be aware whether a problem is ap-
proached top-down or bottom-up. In the same way it is useful to be aware
of the above mentioned sub-functions of abstraction.

The word abstraction may be used to characterize a process, and the sub-
functions of abstraction were explained as processes going on with the aim of
creating concepts. On the other hand the word abstraction may also be used
in a static or descriptive way. A concept is an abstraction. Given a number
of concepts, their structure may be described in terms of classification, ag-
gregation and generalization. It is e.g. possible to describe a given concept
as a generalization of a number of other concepts.

In teaching it is important that the students are aware of this distinction.
When evaluating a given language they might consider to what extent the
language support abstraction and its sub-functions as a process and to what
extent the language supports abstraction and its sub-functions as a means

8

for describing concept structures.

Information Processes and Object-Oriented Program-
ming

Having discussedconcepts and abstraction weturn our attention towards char-
acterizing the part of the world we are interested in creating model systems
for, and then characterize object-oriented programming in greater detail.

The kind of model systems we are interested in, are those that model in-
formation processes. An information process is regarded as a system, de-
veloping through transformations of its state. The substance or material of
the process is organized as objects. Objects are the computerized material
used to construct computer based physical models. The state of the sub-
stance may be measured upon through measurable properties, and the state
of the substance may change as an effect of transformations on the substance.
Substance is physical material, characterized by a volume and a position in
time and space. Substance have certain properties that may be measured.
E.g. measurements may be compared with other measurements. Transfor-
mations are partially ordered sequences of events that change the substance
and thereby its properties. Note that by focusing on information processes,
concepts exist that cannot be captured, e.g. “good”, “bad”, etc.

In object-oriented programming, an information process is modeled by orga-
nizing the substance of the program execution as a number of objects. The
measurable properties are modeled as state of objects, and transformations
are organized as action sequences performed by objects. An object is fur-
thermore characterized by a set of attributes that may be either measurable
properties, part-objects, references to objects, procedures, or classes. Finally,
an object may have an action-sequence associated with it. Every object has
at any given point in time a state. States are changed by objects performing
actions that may involve other objects. Actions may in addition be involved
in the production of measurements. A program execution consists of a col-
lection of objects. Objects are classified into classes, and classes may be
specializations of more general classes.

9

2 The BETA Programming Language

The rest of this paper will give an overall presentation of BETA. The ex-
amples will mainly show how to use BETA to program the Macintosh II2.
Besides the Macintosh II implementation, implementations exist for SUN-3,
HP-90 and Apollo 3500.

This paper is not a complete introduction to BETA. A number of concepts
such as co-routine sequencing and concurrency will not be described. For a
more detailed description, the reader is referred to [6] and [7].

In the following, it is assumed that the reader is familiar with some other
object-oriented language such as Simula, C++, Eiffel or Smalltalk. In [7],
object-oriented programming and BETA is presented without assuming pre-
vious knowledge of object-orientation.

2.1 Objects and Classes

A BETA program execution consists of a collection of objects. Objects
are some computerized material characterized by a set of attributes and an
action-part. Objects may be described as instances of patterns. Consider the
following example:

Student:

(# Key: @ Integer;

Name: @ Text;

Major: ^ Education;

CoursesTaken: @ Set(# elmType::< Course #);

ChangeMajor:

(# newMajor: ^ Education

enter newMajor[]

do ...

#) ;

CoursePassed:

2The current implementation runs on Macintosh SE/30 and II under MPW and at
least 4 Mb of memory.

10

(# C: ^ Course

enter C[]

do C[] -> CoursesTaken.Insert

#)

CourseGrade:

(# C: ^ Course;

G: @ Grade

enter C[]

do (if (C[] -> CoursesTaken.has)\\
TRUE then C.grade -> G if)

exit G

#)

#)

The example describes:

• A pattern with the name Student.

• The structure of the pattern is described by (# ...#).

• An instance of Student represents a student enrolled at some univer-
sity.

• Student objects are characterized by seven attributes: Key, Name,

Major, CoursesTaken, ChangeMajor, CoursePassed and CourseGrade.

• The attributes Key, Name and Major and CoursesTaken are reference
attributes. The distinction between the meaning of @ and ^ will be
explained below.

• The attribute Key is a unique key associated with all students.

• The attribute Name represents the name of the student.

• The attribute Major refers to an object describing the major follows by
the student.

• The attribute CoursesTaken refers to an object that keeps track of
the courses that the student has completed. The construct Set (#

elmType ::< Course #) describes that CoursesTaken is an instance

11

of the pattern Set. Set is a generic pattern parameterized by a pattern
elmType. The “pattern parameter” is bound to the pattern Course.
This will be further explained below.

• The attributes ChangeMajor, CoursePassed and CourseGrade are pat-
tern attributes.

• An instance of ChangeMajor represents an action-sequence to be exe-
cuted when the student changes to another major.

• An instance of CoursePassed represents an action-sequence to be ex-
ecuted when the student completes a course.

• An instance of CourseGrade represents an action-sequence to be exe-
cuted in order to find the grade a student have obtained in a course.

The pattern Student may be used to describe Student objects as follows:

S1, S2, S3: @ Student

Using S1, S2, and S3, it is possible to access attributes of the student objects:

S1.Name

denotes the Name attribute of the Student object referred to by S1. The
name of the Student object may be changed by means of an assignment
imperative of the following form:

’Hans Christian Andersen’ -> S1.Name

Description of an action sequence representing that a course has been taken
by student S1, may be described as follows:

advancedPhysics[] -> &S1.CoursePassed

12

This describes that an instance of S1’s Coursepassed attribute is generated.
A reference to the object advancedPhysics is assigned to the C attribute
of this new object (described by enter C[]). The imperatives described
in the do-part of CoursePassed will then be executed. The symbol & reads
new. This coesponds to message sending in Smalltalk and remote procedure
call in Simula , C++ and Eiffel. In this case, where CoursePassed is used
as a procedure pattern, we could have used the shorthand:

advancedPhysics[] -> S1.CoursePassed

A pattern is an abstraction mechanism intended for representing concepts in
general. Very often a pattern is intended for modelling either a class, pro-
cedure or function. The pattern construct is a generalization of abstraction
mechanisms such as class, procedure, and function. A pattern may conse-
quently be used as a class, procedure or function. A pattern that is intended
to be used as a class will be called a class pattern. Similarly we shall speak
about procedure patterns and function patterns. In the student example,
Student corresponds to a class pattern and ChangeMajor and CoursePassed

correspond to procedure patterns.

2.2 Part Objects and Separate Objects

The attributes Key, Name, Major and CoursesTaken of the class pattern
Student are examples of reference attributes. Reference attributes corre-
sponds to instance variables in Smalltalk and member fields in C++. A
reference denotes an object. A reference may either be static or dynamic. A
static reference will constantly denote the same object whereas a dynamic
reference may denote different objects. A static reference is described in the
following way:

S: @ Student

where S is the name of the reference and Student is a pattern name. The
object being denote is generated as part of the generation of the enclosing
object. A static reference denotes the same object during the lifetime of the
enclosing object. An object generated in this way is called a part object.

13

A dynamic reference is described in the following way:

R: ^ Student

where R is the name of the reference. A dynamic reference may denote dif-
ferent objects during the lifetime of the enclosing object. Initially it denotes
NONE, which represents no object. A dynamic reference may be given a value
by means of a reference assignment like:

S[] -> R[]

which describes that a reference to the object referred to by S is assigned
to R. This means that R and S will both refer to the same object after the
assignment. In this example, S is a static reference referring to a part object.
A dynamic reference may of course also be assigned to R. If

R1: ^ Student

then

R1[] -> R[]

is another example of a reference assignment. Note that an assignment of
the form

R[] -> S[]

is not legal, since S is a static reference.

It is also possible to create objects dynamically by execution of actions. The
following evaluation creates an instance of the pattern Student and the result
of the evaluation is a reference to the newly created object:

& Student[]

14

As for procedure invocation, the symbol & means new. The symbol [] means
that a reference to the object is returned as the result of the evaluation. A
dynamic generation may be part of a reference assignment:

& Student[] -> R[]

The result of this assignment is that a new instance of Student is created
and a reference to this new object is assigned to R.

2.3 Subpatterns

Patterns may be organized in a subpattem hierarchy. The following example
shows a subpattem hierarchy of Record, Person, Employee, Student, and
Book.

Record:

(# Key: @ Integer;

#);

Person: Record

(# Name: @ Text; Sex: @ Text

#);

Employee: Person

(# Salary: @ Integer; Position: @ Text;

#);

Student: Person

(# Major: ^ Education;

CoursesTaken: @ Set(# elmType::< Course #)

#);

Book: Record

(# Author: ^ Person; Title: ^ Text

#)

This example is of course not complete. Only attributes particular relevant to
the following examples are included. Please note, that the Student pattern
described earlier is introduced as a subpattern in this hierarchy. All attributes
of the previous definition should of cource be repeated here.

15

Person is defined as a subpattem of Record, which means that it inherits
the description of Record. Student and Employee are both defined as sub-
patterns of Person. Finally Book is also defined as a subpattem of Record.
The notion of superpattern is the reverse of subpattern. Record is the su-
perpattern of Person and Book. Person is the superpattern of Student and
Employee. The meaning of subpatterns is similar to subclassing in Simula,
Smalltalk and most other object-oriented languages. An instance of a sub-
pattem has all the attributes of the superpattern in addition to the new
attributes described for the subpattem.

2.4 Qualification of References

In BETA, references are qualified as in Simula, C++ and Eiffel. The quali-
fication of a reference restricts the set of objects that may be referred to by
the reference. Consider refe nces declared as follows:

R: ^ Record;

P: ^ Person;

S: ^ Student

The qualification of R is Record, the qualification of P is Person, and the
qualification of S is Student. R may refer to instances of Record or instances
of subpatterns of Record, P may refer to instances of Person or instances of
subpattems of Person, and S may refer to instances of Student or instances
of subpattems of Student. Intuitively, we say that R must be at least a
Record, P at least a Person, and S at least a Student.

2.5 Values and Assignments

One of the fundamental concepts inprogramming is the distinction between
the reference to an object and the state of the object. Many object-oriented
languages does not express this difference explicitly. In the BETA syntax
there is an explicit distinction between manipulating a reference and manip-
ulation of the state of an object.

Consider the following pattern:

16

Point:

(# x, y: @ Integer; count: @ Integer;

enter (x, y)

do count + 1 -> count

exit (x, y)

#)

Point objects can be manipulated by manipulating references and by ma-
nipulating the state. The two different assignments are called value and
reference assignments. The enter part specifies, that two values may be as-
signed to a Point object, and the exit part specifies that two values may be
extracted from a Point object. Assignment to Point objects will result in
the manipulation of the x and y part objects of the Point objects, whereas
the count part objects is not affected. On the other hand, count cannot
be extracted from a Point object by an value assignment to another Point
object.

Consider the following object:

(# P1, P2: @ Point;

P3, P4: ^ Point

do &Point[] -> P3[]; &Point[] -> P4[];

(1, 1) -> P1; (2, 2) -> P2; {1}
(3, 3) -> P3; (4, 4) -> P4; {2}
... {3}
P1 -> P2; P1 -> P3; P3 -> P4; {4}
P1[] -> P3[]; P3[] -> P4[]; {5}

#)

At {1}, P1.x and P1.y are both 1,and P2.x and P2.y are both 2 where as
count in both P1 and P2 is 0 (initial value of Integer). At {2}, P3.x is 3, etc.
All assignments are value assignments, transferring values into the objects
through the enter list. Let us assume, that . . . at {3} results in P1.count

being 1, P2.count being 2, etc., whereas the x and y values are unchanged.
At {4}, the assignments are still value assignments. This implies that P3.x
is 1 but P3.count is still 3 (since count is unaffected by value assignments
since it is not in the enter/exit lists). However, the assignments in {5} are
reference assignments resulting in P1, P3 and P4 pointing at the same object,

17

and the count attribute of this object is unaffected by these assignments and
thus still being 1.

The legality of a value assignment is tested by matching the exit list with the
enter list. An exit list matches an enter list, if the two lists have the same
(recursive) structure, and if two identical basic values (such as Integers)
are matched, or two dynamic references are matched. A dynamic reference
in the exit list (A) matches a dynamic reference in the enter list (B), if the
qualification of A is a subpattem of the qualification of B.

The legality of a reference assignment (A[] -> B[]) is tested by checking
that B is a dynamic reference, and that the qualification of A is a subpattem
of the qualification of B.

2.6 Combination of Action Parts

Since patterns may be used as procedures, the subpattem mechanism is also
available for procedure patterns. Execution of a subpattem consists of ex-
ecuting the do-part of the superpattern combined with the do-part of the
subpattem. The combination of do-parts is described by means of the INNER
imperative. Assume that PP is a subpattern of P. Execution of an instance
of PP starts by an execution of the do-part of P. Whenever an INNER is
encounted in the do-part of P, the do-part of PP gets executed.

The following example illustrates the combination of do-parts of subpattems.
We consider three levels of subpattems:

OpenRecord:

(# ID: ^ Text; R: ^ Record

enter ID[]

do ID[] -> theDataBase.Open -> R[];

INNER;

R.Close

#);

OpenWritableRecord: OpenRecord

(#

do R.Lock;

18

INNER;

R.Free

#);

NewKey: OpenWritableRecord

(# newKey: @Integer

enter newKey

do newKey -> R.Key

INNER;

#)

The above exarnple describes a hierarchy of procedure patterns. OpenWrit-
ableRecord is a subpattem of OpenRecord and NewKey is a subpattem of
OpenWritableRecord. The pattern NewKey may be invoked in the following
way:

(R[], 1234) -> &NewKey

The meaning of this is as follows:

• An instance of NewKey is created

• The enter part of this instance is a concatenation of the enter parts of
OpenRecord, OpenWritableRecord and NewKey. This gives the follow-
ing enter part:

enter(ID[], newKey).

• Execution of the NewKey object starts with the execution of the do-
part of the topmost superpattem of NewKey. This means that execu-
tion of the do-part of OpenRecord is executed. menever INNER is exe-
cuted here, the do-part of OpenWritableRecord is executed. Whenever
INNER is executed here, the do-part of NewKey is executed. Execution
of INNER in the do-part of NewKey is the empty action (skip), since
NewKey is the procedure pattern being invoked.

• Execution of NewKey gives rise to execution of the following actions:

19

ID[] -> theDataBase.Open -> R[];

R.Lock;

newKey -> R.Key;

skip;

R.Free;

R.Close

2.7 Virtual Patterns

In Simula and C++, a procedure attribute may be declared as a virtual
procedure attribute. In BETA, a pattern attribute may be declared virtual.
A virtual pattern attribute may be extended in subpattems. Here the virtual
concept of BETA will be illustrated by means of examples. For a more detain
description, see [9]. In the following example, a Display attribute has been
added to the Record pattern hierarchy. The procedure pattern Display is
declared as a visual pattern. The description of Display is then extended in
the subpatterns Person and Student.

Record:

(# Key: @ Integer;

Display:< (# do {Display Key} INNER #)

#)

Person: Record

(#

Display::< (# do {Display Name, Sex} INNER #)

(#

Student: Person

(#

Display::< (# do {Display Major, CoursesTaken}
INNER #)

#)

The construct

Display :< (# ...#)

20

in Record is a declaration of a virtual pattern attribute called Display. For a
virtual pattern only part of its structure has been described. This is different
from a non-virtual pattern where the complete structure is described as part
of the declaration. The construct

Display ::< (# ...#)

in Person and Student describes that the structure of the Display pattern
is extended.

Consider the reference

R: ^ Record

and the invocation

R.Display

If R refers to an instance of the pattern Record, then the Display pattern
described in Record will be invoked. If R refers to an instance of Person,
the Display pattern of Person will be invoked and similarly if R refers to an
instance of Student, the Display pattern of Student will be invoked.

It has not yet been said exactly what it means to invoke the Display pat-
tern of, say Student. There is an important difference between the virtual
procedure mechanism of Simula, C++ and Eiffel and the virtual (procedure)
pattern mechanism of BETA. In Simula, C++ and Eiffel, the definition of
a virtual procedure is completely redefined in subpatterns. For C++ and
Eiffel, it is possible explicitly to call the virtual procedure of the superpat-
tern.In BETA, it is not possible to redefine a virtual pattern. It is “only”
possible to extend the definition of a virtual pattern.

In the above example, the Display pattern of Person is a subpattem of the
Display pattern of Record. Similarly, the Display pattern of Student is a
subpattem of the Display pattern of Person. In fact, anonymous patterns
corresponding to

21

Record-Display: (# do {Display Key} INNER #);

Person-Display:

Record-Display (# do {Display Name and Sex} INNER #);

Student-Display:

Person-Display(# do {Display Major and CoursesTaken}
INNER #);

are created as a result of the virtual definitions and extensions hereof.

For instances of Record, Display is bound to Record-Display, for in-
stances of Person, Display is bound to Person-Display and for instances
of Student, Display is bound to Student-Display.

Let us reconsider an invocation of

R.Display

Assume that R refers to an instance of Student. This implies that Student-Dis-
play will be invoked and that the following actions are executed:

{Display Key}
{Display Name and Sex)}

{Display Major and CoursesTaken}

It is possible to use explicit qualification of virtual patterns instead of the
anonymous patterns mentioned above. This means that we could describe
the Record hierarchy as follows:

Record:

(# Key: @ Integer

Display:< DisplayRecord;

DisplayRecord: (# do {Display Key} INNER #)

#);

Person: Record

Display:< DisplayPerson;

22

DisplayPerson:

DisplayRecord: (# do {Display Name and sex}
INNER #)

#);

Student: Person

(#

Display::< DisplayStudent;

DisplayPerson:

DisplayPerson: (# do {Display Major

and CoursesTaken} INNER #)

#)

2.8 Virtual Class Patterns

The above examples of virtual patternsis an example of using the virtual
mechanism as virtual procedure patterns. Since the pattern is a unification
of class, procedure and function, the virtual mechanism is also available for
classes. This means that it is possible to describe virtual class patterns.
A virtual class pattern is declared in the same way as a virtual procedure
pattern. Consider the following description of the pattern Set:

Set:

(# elmType :< Object; {‘‘Type’’ of elements in the Set}
Insert: (# E: ^ elmType enter E[] do ...#);

Has:

(# E: ^ elmType; found: @Boolean

enter E[]

do ...

exit found

#) ;

Remove: (# E: ^ elmType enter E[] do ... #);

Scan:

(# current: ^ linkage;

thisElm: ^ elmType;

23

atEnd: @Boolean

do head[] -> current[];

Loop:

(if (current[] <> NONE) / / True then

current.elm[] -> thisElm[];

(current.succ[] = NONE) -> atEnd;

INNER;

current.succ[] -> current [];

restart Loop

if) #);

{Implementation attributes}
Linkage: (# E: ^ elmType; succ: ^ linkage #);

head: ^ Linkage;

#)

A Set object is characterized by the procedurepatterns Insert, Has, Remove
and Scan. The procedure pattern Insert inserts an object into the Set,
Has test whether or not a given object is in the set, and Remove removes a
given object from the set. The set is implemented as a linked list. The class
pattern Linkage describes the objects of such a list. Each object in the list
has a reference, E, to the object in the set. In addition, it has a reference,
succ, to the next element of the list. The reference head refers to the first
element of the list. The details of the procedure patterns Insert, Has and
Delete are not described.

The attribute Scan is an example of a control pattern. An execution of
Scan goes through all the elements of the set and perform an INNER for each
element of the set. The reference thisElm functions as an index variable
that steps through the elements of the set. An exmple of using Scan is
shown below.

The virtual pattern elmType is the “type” of the elements of the Set. ElmType
is qualified by the most general pattern Object. This means that a Set ob-
ject may include instances of all patterns. In subpattems of Set, it is possible
to restrict the type of elements to be stored in the set. This may be done
by extending the virtual pattern elmType to subpattems of Object. The
following example shows an example of a set for storing Records. The class
pattern RecordSet is defined as a subpattem of Set. The virtual pattern

24

elmType is extended to the pattern Record. This restricts the elements in
RecordSet to instances of Record (or subpattems of Record).

RecordSet: Set

(# elmType ::< Record;

Display: (# do scan(# do thisElm.Display #) #)

#)

A procedure pattern attribute Display has been added to RecordSet. It
scans through all elements of the RecordSet and invokes their Display pat-
tern. This is legal since thisElm is quality as Record in RecordSet and
Record is known to have a Display attribute.

It is possible to describe further subpattems of RecordSet:

PersonSet: RecordSet(# elmType::< Person #);

StudentSet: PersonSet(# elmType::< Student #);

A PersonSet may contain instances of Person and instances of subpattems of
Person whereas StudentSet may contain instances of Student and instances
of subpattems of Student.

The attribute CoursesTaken described in pattern Student is another exam-
ple of using pattern Set. The description of this attribute is as follows:

CoursesTaken: @ Set(# elmType::< Course #)

This is an example of a singular object. The object CoursesTaken is described
directly and not as instance of a pattern. Instead, it is possible to introduce
a new pattern for this purpose:

CourseSet: Set(# elmType::< Course #);

CoursesTaken: @ CourseSet

In general, a singular object description may introduce an arbitrary number
of new attributes. It is not just restricted to have virtual bindings as in the
above example.

25

The above examples have shown examples of nested patterns. The Set pat-
tern contains local patterns like Insert and Linkage. In general, BETA
supports block structure in the sense that patterns may be arbitrarily nested.
In addition to nesting procedure patterns, it is also possible to have nested
class patterns as demonstrated above with Set and Linkage.

3 The BETA Macintosh Environment

The BETA implementation for the Macintosh II consists of an implementa-
tion of the BETA language with automatic garbage collection and an exten-
sive set of libraries, containing patterns describing often used data structures
and a complete interface to the Macintosh Toolbox (the BETA Macintosh
interface is called MacEnv). Besides the Toolbox interface, MacEnv contains
an object-oriented layer with patterns describing windows (with and without
graphics capabilities), menus (pull-down and pop-up), dialog boxes and text
editors. Moreover there is an object-oriented graphics library. The event
handling within interaction objects (such as windows, menus, etc.) are han-
dled by means of virtuals. Furthermore, MacEnv contains object-oriented
interfaces to the mouse, the cursor, the clipboard, the active window and the
menu bar of the Macintosh.

The complete Mjølner BETA system includes a syntax-directed editor, a
metaprogramming system, a fragment system, a user interface system, and
several additional libraries. The system is available on SUN-3, Apollo 3500,
HP 9000 and Macintosh II and SE/30. An overview of the system is given
in [5].

The BETA Macintosh interface has the form of an abstract superpattern
MacEnv and applications are created by making specializations of this pattern.
By an abstract superpattern is meant that the pattern has to be specialized
in order to supply additional information (patterns, extensions to virtual
patterns, references, etc.) to complement the entire application.

In the following, parts of MacEnv will be described by giving an example of
using MacEnv. MacEnv has been chosen because it is well suited for demon-
strating the features of the BETA programming language. In addition it
illustrates that by using BETA on the Macintosh, it is easy for students to

26

program their own applications using the powerful Macintosh Toolbox.

Let us present the facilities of MacEnv by creating a Macintosh application
with an interface to the Record example presented above. The application
will present itself by a window showing the inheritance graph of Record. Each
node in the graph presents a pattern and the leaves in the graph represents
both the pattern and an instance of Register, containing instances of that
pattern. Users may interact with each node by pressing the mouse button on
each node, resulting in a pop-up menu, showing the valid commands of that
node. Figure 1 shows the graph with the user pressing the mouse button on
the Book node. Three menu items are available: Greate, Find and PrintAll.
Create opens a dialog box containing a template for a Book object to be filled
in by the user. When the OK button is pressed, a Book object is created and
inserted in the Book register.

Figure 1: The inheritance graph window

The Find menu item opens a dialog box. Here only selected fields needs to
be filled in, and when the Next button is pressed, the first object in the Book
register which matches the selection pattern will be shown (i.e. contains
identical values in the fields filled in by the user). This dialog box has two
buttons: Next which displays the next object in the Book register and Ok

which closes the dialog box.
The PrintAll menu item will display all objects in the Book register in
separate windows.

Similar menus are available on the Employee and Student nodes. On the
Person node, the Create menu item is not available and the Find and
PrintAll items will work on both the Employee and Student registers. On
the Record node, Find and PrintAll are available too, but Find will only

27

be able to select on a given Key value.

In the following program, realizing this interface, all dialog axes and menus
are descry using Macintosh resources. This is done in order to reduce the
size of the example.

3.1 Creating the Top Level Window

In order to indicate which parts of the following is inherited from MacEnv

(and possibly further extended), we have written all names etc. originated
from patterns defmed in MacEnv in italic.

Macenv
(#

(� Record example as above �)

GraphWindow: @graphicsWindow
(#

recordNode: @hitTextObject(# ...#);

personNode: @hitTextObject(# ...#);

employeeNode: @hitTextObject(# ...#);

studentNode: @hitTextObject(# ...#);

bookNode: @hitTextObject(# ...#);

EventHandler::<
(#

refresh::<
(# do

(70,15) -> pen.moveTo; (50,35) -> pen.lineTo;
(70,55) -> pen.moveTo; (50,35) -> pen.lineTo;
(140,65) -> pen.moveTo; (120,55) -> pen.lineTo;
(140,45) -> pen.moveTo; (120,55) -> pen.lineTo

#)

#);

Open::<
(# do

(true, ‘Record’, fonts.system, 12, (3,40)) ->

28

recordNode.init;
(true, ‘Book’, fonts.system, 12, (73,20)) ->

bookNode. init;
(true, ‘Person’, fonts.system, 12, (73,60)) ->

personNode. init;
(true, ‘Employee’, fonts.system, 12, (143,50)) ->

employeeNode. init;
(true, ‘Student’, fonts.system, 12, (143,70)) ->

studentNode. init;
#)

#)

do (� MacEnv �)

‘Register’ -> GraphWindow.open;
#)

The top level window, GraphWindow, is a singular instance of graphics-

Window. In GraphWindow and five singular instances of hitTextObject

are defined: recordNode, personNode, employeeNode, studentNode and
bookNode. Furthermore, the virtual procedure pattern EventHandler, in-
herited from graphicsWindow, is extended to draw the connecting lines in
the hierarchy in response of a refresh event. The procedure pattern open,
also inherited from graphicsWindow, is specialized to initialize the hitText-
Objects. HitTextObjects are textual objects, that are selectable with the
mouse. The parameters to the initializations specifies that the objects are
selectable, the text of the object, the font to be used, the size of the font,
and finally the position to draw the object in the window. HitTextObjects
are automatically redrawn in response of refresh events. Finally, the only
action of the body of MacEnv is to initialize GraphWindow. ‘Register’ is
the name of the Macintosh resource defining the window type. Open fetches
the resource, initializes the window and displays the window.

We have not defined what happens when the user selects one of the nodes.
This is done by defining menus and dialog boxes and associate them with
the user actions of selection. This is done in the hitTextObjects.

29

3.2 Creating Menus

For each node, we have to define the menus. We will only show the definition
of the bookNode in fur details here:

bookNode: @hitTextObject

(# bookRegister: @BookSet;

bookMenu: @menu;

CreateDialog: dialog(# ...#);

findDialog: dialog(# ...#);

hit ::<
(# do (if ((mouse.getPosition, 0) ->

bookMenu.Popup)
//1 then CreateDialog

//2 then findDialog

//3 then bookRegister.Display

if)

#) ;

init ::<
(# do

bookRegister.init;
‘Book’ -> bookMenu.namedGet;
bookMenu -> MenuBar.InsertSubMenu;

(� register as a pop-up menu �)

#) ;

#)

BookNode is being defined as a singular instance of hitTextObject. BookNode
contains the bookRegister, a menu and two dialog boxes. The bookNode

extends the inherited hit, which defines the action to be executed when the
book label in the inheritance tree is invoked. In this case, the actions pops
up a menu with three choices: Create, Find and PrintAll (defined by the
‘Book’ resource). Mouse.getPosition returns the current position of the
mouse. The numbers 1, 2 and 3 are the numbers of the menu choices. In the
case of the first menu choice being selected (i.e. Create), the createDialog

30

box is opened. In the case of the second menu choice being selected (i.e.
Find), the findDialog box is opened. Finally, in the case of the third menu
choice being selected (i.e. PrintAll) , the whole bookRegister will be
printed. The inherited initialization pattern, init, initializes bookRegister,
fetches the ‘Book’ resource that defines the format of bookMenu. Finally,
bookMenu is inserted in the menu bar in order to enable it to be used as a
pop-up menu. The inherited procedure pattern namedGet fetches a resource
with the given name, and initializes the object according to the specifications
in the resource. NamedGet is also used in the definition of the dialog boxes
below. The details of the flog boxes are given in the next section.

3.3 Creating Dialog Boxes

The dialog boxes are all created as singular instances of the Dialog pattern:

createDialog: @dialog

(# EventHandler ::<

(# itemSelected ::<

(# do

(if item
//1 then (�OK button�)

(newKey, 4-> items.getText,
6-> items.getText) -> newBook ->

bookRegister.insert;

true -> terminated
//2 then (�Cancel button�)

true -> terminated
if) #) #)

do

‘CreateBook’ -> namedGet

#)

The createDialog box contains two buttons (defined by the ‘CreateBook’

resource), and the inherited EventHandler is extended to specify that a new
instance of Book should be initialized and inserted into into the bookRegister,
based of the information entered in the various welds of the dialog box, if

31

the OK button is pressed. The unique Key field of the new Book instance is
created by the newKey procedure pattern (not shown). If the Cancel button
is pressed, the dialog box will be closed without inserting any new Book ob-
jects into the bookRegister. The numbers 4 and 6 refers to the text fields of
the dialog box. A dialog box is closed by invoking the terminated procedure
pattern with true as enter value.

FindDialog is a little more complex than createDialog since it must en-
able the scanning of bookRegister and show each book that has the same
value for the specified fields. This is implemented by means of a co-routine3

Scanner that returns a matching Book instance in each invocation. The
details of Scanner is deferred until after the details of findDialog.

findDialog: dialog
(# moreBooks: @Boolean;

Scanner: @|bookRegister.Scan(# ...#);

EventHandler ::<
(# itemselected ::<

(# do

(if item
//1 then (�OK button�)

true -> terminated
//2 then (�Next button�)

(if moreBooks//TRUE then

(5 -> items.getText,
7 -> items.getText) -> Scanner

-> moreBooks

if)

if) #) #);

do

‘FindBook’ -> namedGet;

true -> moreBooks;

3BETA co-routines are not described above, but for the sake of this example it is
sufficient to think of them as procedures, that can be suspended in the middle of their
execution. Next time, the co-routine is invoked, it will resume from the suspension point.
Each time a co-routine is suspended, it will return the values specified in the exit-list.

32

(8, ’ ’) -> items.setText;
(10, ’ ’) -> items.setText;
(11, ’ ’) -> items.setText;

#);

The findDialog box contains two buttons (defined by the ‘FindBook’ re-
source), and the inherited EventHandler is extended to specify that the selec-
tion patterns, entered by the user in the text fields 5 and 7 in the dialog box,
are given as enter parameters to Scanner when the Next button is pressed. If
the OK button is pressed, the dialog box is closed. The do-part of findDialog
specifies fetching the ‘FindBook’ resource, and clearing the text fields 8, 10
and 11 in the dialog box (the text field numbers are defined in the resource).
The boolean variable moreBooks is used to test, whether Scanner is able to
deliver any more books. The details of Scanner are given below.

Scanner: @|bookRegister.Scan

(#title, author: @text;

matching:

(# match: @Boolean

do true -> match;

(if (title.length > 0)//TRUE then

(title -> thisElm.title.equal) -> match

if);

(if (match and (author.length > 0))//TRUE then

(author -> thisElm.author.equal) -> match

if)

exit match

#) enter (author, title)

do

(if matching//TRUE then

(9, (thisElm.Key -> Integer2Text)) -> items.setText;
(11, thisElm.author) -> items.setText;
(13, thisElm.title) -> items.setText;
SUSPEND

if);

exit atEnd

#);

33

Scanner is a specialization of bookRegister.scan, which given an author

and a title (possibly empty text strings), scans through the register, and
checks whether the book in question has identical values in the author and
title fields (if the corresponding enter value is non-empty). If such a book is
found (i.e. the matching procedure pattern returns true), the text fields 9, 11
and 13 are initializes to show the values of the book found in bookRegister.
The procedure pattern Integer2Text converts a text containing a integer
literal, into the corresponding integer (not shown). Hereafter, Scanner is
suspended, waiting for the user to press the next button. Scanner returns
a boolean (atEnd defined in scan) indicating whether is can be resumed in
order to display another book.

Figure 3 shows a screen dump of the three dialog boxes described above.

Figure 2: The dialog box createDialog

The above program fragments do not specify the Record application totally.
In order to complete the program, the behavior of the other nodes needs to be
specified. However, these share almost the same structure as the Book node
and they are therefore excluded here. It should also be noted that checking
for various (obvious) error conditions have also been ignored to reduce the
code size. For the same reason, we have not put any emphasis of the graphical
layout (visual appearance) of the graph in the top level window. However,

34

including these aspects in the final program is straight forward.

4 Conclusion

As illustrated above, rather complex user interfaces with advanced applica-
tion functionalities can be created with relatively little effort. What is most
impost is, that the structure of the program and particularly the user in-
tefiace structures are very intuitive and thereby supporting the creation of
elegant systems.

It should also be noted that the direct mapping of object functioned onto the
user interface brings the object-oriented design philosophy into both ordinary
application programming and user interface programming, resulting in very
uniform systems with respects to the overall structural properties of the
programs.

It is important to stress that teaching object-oriented programming is not
only a matter of teaching the students how to write programs using a par-
ticular object-oriented language or system. The courses must take the fun-
damental aspects of object-orientation seriously, and discuss concepts, their
structure and relations, and the relations between “the real world” and the
object-oriented models hereof in order to emphasize that yet another lan-
guage does not solve any problems alone — only new approaches to problem
solving and model construction can lead to better overall system capabilities.

The BETA Macintosh System is an effective vehicle in teaching object-
oriented programming, since the BETA language contains language consructs
directly designed to enable the construction of effective solutions to software
construction using “state-of-art” object-oriented language constructs. The
language consists of very few concepts and the power of the language is the
orthogonality of these concepts. The BETA language is part of the Mjølner
BETA System, offering several supporting tools, and the BETA Macintosh
System offers the full interface to the entire Macintosh Toolbox, putting
the construction of highly interactive object-oriented applications within the
reach of student assignments.

The BETA Macintosh System is available as a prerelease from Mjølner In-
formatics at the time of writing. During the spring and summer, Mjølner In-

35

formatics will finalize the system and deliver a special educational package,
consisting of the system with manuals, course outline, and supplementary
material (such as the book on the BETA language).

Acknowledgements

Many people have taken active part in the development of the Mjølner BETA
System and the BETA Macintosh System and we would like to thank all of
them. However, special thanks are due to Apple Computer Inc. who have
supported the work on the BETA Macintosh System.

References

[1] H. Abelson, G.J. Sussman, J. Abelson: The Structure and Interpretation
of Computer Programs, MIT Press, 1985.

[2] A. Goldberg, D. Robson: Smalltalk-80: The Language and its Imple-
mentation, Addison-Wesley, 1983.

[3] O-J. Dahl, B. Myrhaug, K. Nygaard: (Simula 67) Common Base Lan-
guage, Publication N. S-22, Norsk Regnesentral (Norwegian Computing
Center), Oslo, Oct. 1970 (Revised version, Feb. 1984.)

[4] J. Lindskov Knudsen, K. Stougaard Thomsen: A Conceptual Frame-
work for Programming Languages. Technical Report DAIMI PB-192,
Computer Science Department, Aarhus University, April 1985.

[5] J. Lindskov Knudsen, O. Lehrmann Madsen, C. Nørgaard, L. Bak Pe-
tersen, E. Sørensen Sandvad: An Overview of The Mjølner BETA Sys-
tem, MIA report, Mjølner Informatics, March 1990.

[6] B. Bruun Kristensen, O. Lehrmann Madsen, B. Møller-Pedersen, K.
Nygaard: The BETA Programming Language — Part 1: Abstraction
Mechanisms — Part 2: Multi-Sequential Execution. In: B.D. Shriver,
P. Wegner (eds.): Research Directions in Object-Oriented Programming,
MIT Press, 1987.

36

[7] B. Bruun Kristensen, O. Lehrmann Madsen, B. Møller-Pedersen, K. Ny-
gaard: Object-Oriented Programming in the BETA Programming Lan-
guage. Draft book, March 1990.

[8] O. Lehrmann Madsen, J. Lindskov Knudsen: Teaching Object-Oriented
Programming is more than Teaching Object-Oriented Programming
Languages. In: Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’88), Oslo, Norway, August 1988.

[9] O. Lehrmann Madsen, B. Møller-Pedersen: Virtual Classes — A Power-
ful Dimension in Object-Oriented Programming. In: Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’89), New Orleans, Louisiana, October 1989.

[10] B. Meyer: Object-oriented Software Construction, Prentice Hall, 1988.

[11] B. Stroustrup: The C++ Programming Language, Addison-Wesley,
1986.

37

