
www.soundeffects.dk

SoundEffects | vol. 9 | no. 1 | 2020 issn 1904-500X

Alvaro E. Lopez Duarte
PhD Candidate in Digital Composition

University of California, Riverside

Algorithmic interactive music
generation in videogames
a modular design for adaptive automatic music scoring

http://www.soundeffects.dk

– 39 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

Abstract

In this article, I review the concept of algorithmic generative and interactive music and dis-
cuss the advantages and challenges of its implementation in videogames. Excessive repetition
caused by low interactivity in music sequences through gameplay has been tackled primar-
ily by using random or sequential containers, coupled with overlapping rules and adaptive
mix parameters, as demonstrated in the Dynamic Music Units in Audiokinetic’s Wwise
middleware. This approach provides a higher variety through re-combinatorial properties of
music tracks and also a responsive and interactive music stream. However, it mainly uses pre-
recorded music sequences that reappear and are easy to recognize throughout gameplay. Gen-
erative principles such as single-seed design have been occasionally applied in game music
scoring to generate material. Some of them are complemented with rules and are assigned to
sections with low emotional requirements, but support for real-time interaction in gameplay
situations, although desirable, is rarely found.
  While  algorithmic  note-by-note  generation  can  offer  interactive  flexibility  and  infinite 
diversity,  it  poses  significant  challenges  such as  achieving human-like performativity  and 
producing a distinctive narrative style through measurable parameters or program argu-
ments. Starting with music generation, I examine conceptual implementations and techni-
cal challenges of algorithmic composition studies that use Markov models, a-life/evolutionary
music, generative grammars, agents, and artificial neural networks/deep learning. For each 
model, I evaluate rule-based strategies for interactive music transformation using parameters
provided by contextual gameplay situations. Finally,  I propose a compositional  tool design 
based in modular instances of algorithmic music generation, featuring stylistic interactive
control in connection with an audio engine rendering system.

I. Introduction

In the book Writing Interactive Music for Video Games: A Composer’s Guide, Michael Sweet
(2015) examines the relevance of gameplay variability in music content. As a comple-
ment to some examples of interactive videogame music, in the section “Composer
Perspective”, Bear McCreary1 asserts: “The more often the audience is exposed to a
sonic idea, the less impact it has.” (Sweet, 2015, pp. 22).

This kind of back-to-back sequence replay is mostly distinct from the gesture
of restatement or re-exposition of music material intentionally. The repeated use
of the same musical audio clips potentially stands out as unintentional filling of
auditory space. It can cause an arguable diminution in tension and surprise on
the listener. In audiovisual storytelling, music often provides emotional context
and continuity for timelines in which a repeated segment mostly relates to a nar-
rative intention. In the case of videogames’ multi-linear structures, occurrences

– 40 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

and gameplay cumulative time are larger than in single-line stories, causing the
assigned music sequences to reappear constantly under current underscoring tech-
niques.

Following McCreary’s claim, repetition not only leads to decreased interest in
the music segment, but also potentially to a conscious and deliberate music filter
by the player. Although it is not possible to state that all repetition is annoying,
changes triggered by interaction are reportedly satisfying. For example, the use
of highly repetitive music in Space Invaders2 is supported by an increase in tempo
correlated to the remaining invaders, providing change and player’s participation.

This suggests that introducing adaptation to gameplay situations, in which the
players recognize themselves as agents of change and variety, may improve the
overall game experience. Besides reducing literal repetition, it has the potential of
enabling transmission of real-time contextual information, given that a continuous
appearance of new elements stimulates players’ attention throughout longer and
numerous audition sessions.

The concept of adaptive music for videogames has been theorized and disclosed
in several writings3, elaborating on concepts such as dynamic or interactive music,
and also encompassing the research on responsive procedural sound design4.

A game is a singular and complex cohesion of systems and aesthetics. Its rules,
shapes, textures, sounds, and music respond to specific needs that may not nec-
essarily include an active always-changing music. Some stylistic constructions
precisely require repetitive or minimalistic aesthetics. Furthermore, particular cat-
egories in games’ functional music as stingers and transitions provide information
about game-state changes and appeal to players’ memories and associations. Hence,
short and distinctive segments with low or no variation are frequently needed in
any videogame music production paradigm.

In this article, the idea of a player’s participation in a multi-linear audiovisual
story generation, specifically as interaction in real-time music playback within
a videogame, is addressed through the possibilities, challenges, limits, and tech-
niques of automatic music composition.

II. Film-like music production vs. real-time music generation

On the side of repetition, music has had a “signature” role in generating identity.
Vintage videogame music, for example, was able to get stuck in the player’s memory,
causing unique aesthetic associations. This is similar to the use of repetition in pop
music’s “hooks” and catchy phrases in jingles and commercials. Although this may
be useful in establishing a distinctive style and a marketable product, the gameplay
music as a subject of multiple auditions may benefit from variation in music con-
tent, leaving identity association to consistent stylistic features.

– 41 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

There is a wide range of videogame genres, artistic and narrative needs, and
budget sizes. As for most of the services, custom and dedicated original music in
a game production demands a larger budget than standardized versions, pre-pro-
duced segments, or automatic music. Mostly, comprehensive funding for music
production will reflect on hiring experienced and prestigious composers, known
performers/orchestras, and highly trained sound engineers running top-notch
recording technology in legendary studios. From this budget-range tendency of
using film soundtrack production pipelines, a preference for linear segment produc-
tion clearly emerges – as opposed to a multi-linear, real-time generation of music.
More recently, and in the mid-size budget sector, the sound quality – as a main argu-
ment in favor of linear music – has been challenged by competitive results achieved
by MIDI, combined with high quality instrument samples and/or efficient synthesis
and audio rendering systems. This can be the pivot point and the opportunity for a
generative engine with high-quality audio output to be considered.

Tackling music repetition
At a more basic level, the prospect of variety in contextual music at gameplay may
appeal to heavy players, even if its function is not to provide additional information

Figure No. 1. Variation through re-combination. In this example of music assignment for videogame environ-
ments, instead of a single segment that repeats as soon it ends, there is a pool of segments especially-designed
to play randomly and to be overlapped, providing more possibilities. In the event of a transition to a second
environment, there is another random container with segments designed to conclude and “cross-fade” with
the introduction segments of the new environment.

Music segment (track or sub-mix)

Transition

Time

Random container

Environment 1 Environment 2

Transition section

Conclusion Introduction

– 42 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

to gameplay than the one originally established. A representation of this concept
for two environments is shown in Figure 1. Current diversification techniques using
re-combination of pre-produced music include:

- Random triggering of loop segments using algorithms to avoid immediate repeti-
tion. This can be combined with transitional overlapping sections to connect the
segments.

- Use of different instrument sub-mix sections. These diverse combinations of
instrumental sets not only result in a range of variety, but also offers levels of
intensity useful for a range of assignments.

- Designing progressions that follow a continuous form and support several types of
harmonic overlapping. Crafting music segments that connect with each other and
with themselves, and that additionally work harmonically when played together,
benefits the music modularity. For a composer, however, this task may be time
consuming and constraining.

- Assigning interactive variables to sound properties for finalized music pieces,
segments, or tracks. Parameters coming from gameplay may affect levels, filters,
transpositions, dynamic processes, and acoustic effect properties in real time,
resulting in a responsive and interactive stream of music.

These techniques usually have been implemented through sound design software
solutions such as Wwise and FMOD, requiring production, memory allocation, and
playback structure design for more segments than in the single-line contextual
music approach.

Figure No. 2. Re-combination vs. generative. On the left, a representation of the re-combinatorial paradigm 
explained in Figure 1. On the right, an example of generative music assigned to environments. In this case, 
the random container pulls musical notes from a particular harmony. The transition is handled by pivotal
harmonies such as diminished chords (e. g. C°7), in their own random container, enabling harmonic tension
and resolution.

Music segment (track or sub-mix)

Transition

Time

Environment 1 Environment 2

Random container

Time

Environment 1 Environment 2

C C°7 C#

Re-combination vs. Generative

– 43 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

By using a similar approach, but replacing music segments by notes5, a random,
constrained distribution will present a simple version of the generative property
(right side on Figure 2).

For instance, it is possible to employ a limited set of recorded pitches from an
instrument exactly as if they were music segments placed in random containers
and to activate a subsection equivalent to a chord. Different containers with par-
ticular harmonies activated in a designed sequence will produce a generative music
stream showing harmonic progressions.

As an interesting example that pioneered the commercial use of generative
algorithmic music production (although not for videogames), Tim and Peter Cole
developed Koan, a software designed in collaboration with Brian Eno at SSEYO in
1996, currently available as Noatikl or Wotja6. It generates music uninterruptedly
based on different random distributions. The user can alter magnitude values on
statistic probabilities for a number of musical properties such as rules, distribu-
tion, ranges, phrase lengths, harmony, mutation factors, and much more. If a music
engine for videogames uses a similar strategy, it could easily assign and connect
discrete gameplay streams (i.e. real-time parameters procedurally generated) to
control music properties.

Currently there are a number of initiatives on automatic music production, some
of them marketed as AI music. Among many of them, it is worth to mention Amper7,
Aiva8, Melodrive9, and Google’s Magenta (disclosed in the neural networks section).
Along with an increasing number of individual models and AI music communities,
they offer different approaches and uses – from open collaborative repositories for
experimental development to proprietary and commercial projects for soundtrack
production, custom ambient, and game music generation.

III. Music as numerical patterns:

Throughout numerous examples of computational automatic music generation,
from Hiller’s Illiac Suite (1957) until today, algorithms or rules established by compos-
ers have been able to produce distinctive aesthetics. Music content as numeric rep-
resentations can be the subject of discrete functions and processes to produce new
material and/or transitional developments, preserving or producing style. Further-
more, direct generation is also available from randomly generated sequences. The
act of choosing the functions, rules, constraints, ranges, and distributions has been
an aesthetic decision executed by composers, music designers, or artists in general.

Given the great quantity and depth of modifiable musical dimensions, a relative
stability in some of them – even if it is a pattern of variation – constitutes a factor
of identity. Several authors working on algorithmic composition or computational
analysis elaborate on the relationship between patterns and similarity and how

– 44 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

they may involve one or multiple dimensions, including, but not limited to pitch
collections, event duration and occurrence, harmonic and melodic density, dynam-
ics, and timbre. Among them, David Cope, in his book Hidden Structure: Music Analysis
Using Computers, proposes four principles as a foundation for discrete music analy-
sis: “all music consists of patterns; all pitch patterns can be reduced to scales; all
elements of scales have different functions; and all patterns, scales, and functions
in music are best understood by modeling their processes” (Cope, 2008, pp. 1). Pat-
terns, scales, functions, and process modeling have been essential elements in both
music analysis and algorithmic composition.

The idea of developing “semi-automatic” music generation techniques has been
considered even before the advent of the computer. Examples as old as the isorhyth-
mic motet, the rota (wheel) or the Musikalisches Würfelspiel (musical dices) (Cope,
2000), to mention a few, generate new music from combinatorial procedures, a cus-
tomized material, and a set of instructions or interaction. Using computers, most
automatic music generation methods similarly start with aleatoric processes in a
pre-designed corpus and then apply rules or constraints to generate the sequences.
Its results are also comparable with common composer’s methods that start with
an improvisation phase that provides motives and ideas which are later developed
through rationalized techniques, theoretical knowledge, and stylistic processes.

Figure No. 3. Simple generative using seed. This is a small development over the generative principle using 
random notes from a harmony. As in the previous figure, random containers using a harmony grid provide 
the stream of notes. In this case, however, the seeding of the PRNG (Pseudo Random Number Generator) 
restarts the sequence. If the random container has a different harmony assigned, the pitches are reassigned to
the closest match. This produces a similar shape, but in a different harmony.

Seed

Time

Environment 1 Environment 2

C C° C#

SeedSeed Seed

Random container with
harmonic constrains. Recalls the sequence

– 45 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

Hence, it may be possible to argue that an intrinsic algorithmic component may be
essential for music making.

Creativity in computation – basically any generative process – starts with an
algorithm known as the pseudo-random-number generator (PRNG). It is used in a wide
range of tasks such as lottery drawing, anti-aliasing, text generation, encryption,
and more. It was first achieved by sampling external phenomena with measurable
levels of entropy like electric noise. The idea of random number generation through
an algorithmic approach10, i.e. without the use of external entropy, has been a
computationally economic solution. Besides the property of producing a sequence
with no discernible pattern or repetition11, it features the possibility of recalling a
sequence. This type of algorithms –called Pseudo Random Number Generators (PRNG)
or Deterministic Random Bit Generators (DRBG) (von Newman, 1951) – is able to recover
a sequence through an initialization value called seed.

In music, single-seed random generation recalls sequences of events and/or gen-
erative properties, making them useful for shape-building.

Thanks to seeding, besides the typical music variety achieved through random
generation, distinctive contours reappear supporting music identity. However, the
richness of progressive development based on compositional techniques is not pre-
sent. Adding algorithmic rules to the resulting stream may bring some of those

Figure No. 4. Generative + algorithmic. This graph shows a generative engine similar to Figure 3, but adding 
algorithms to affect the resulting pitch stream. If they feature inputs (red thunder) tied to one or more game-
play events, states, actions or conditions, the music stream is changed while maintaining some construction
characteristics. This allows for style support, malleability and variety.

Gameplay Interaction:
-Player’s actions

-Environment conditions
-Game events

Algorithm for
Melodic shapes

Algorithm for
Rhythmic patterns

Algorithm for
Harmony

Algorithm for
Dynamics

G
en

er
at

iv
e

En
gi

ne

Transition with
distinctive
elements

Multiple possibilities
sharing style

– 46 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

musical developments back. Certainly, applying sequential variations in music
properties in conjunction with stochastic distribution management – among other
techniques – may improve the music quality.

For computer-aid composition, most techniques can be classified in generative
processes (e.g. stochastic distributions and random generation) and algorithmic
strategies (e.g. functions, rules, and deterministic operations) (Ames, 1987). If a
system combines both generative and algorithmic procedures, the result potentially
offers unlimited variety in music creation and pattern and structure development,
which then would support style and aesthetic shape. Furthermore, algorithms may
be interactive by using conditional and/or progressive modifications through con-
trol inputs in real time. This element is particularly useful in videogames, where
gameplay situations produced by environments, events, and players’ actions con-
stantly generate streams of discrete information suitable to affect parameters of
music generation. Features such as harmony, density, range, rhythmic or motivic
patterns, and timbre can be altered without interrupting the music flow or the need
to overlap other tracks, enhancing the game experience with variety, emotional
support, malleability, and responsiveness.

Figure No. 5. Markov models. On the left, a common display of a transition matrix showing the weights rep-
resenting the statistical possibilities of transition from one state to another. In this example, the states can be
seen as the blue nodes in the graph below. Each transition is color coded and the horizontal sum of the weights
should be equal to one. On the right, the equation for a second order Markov process (two transitions), and 
below, a generalization of the second order for any number of states.

.5 .25 .25

P = .25 .5 .25

.25 .25 .5

p1,3
(2)=p11 p13 +p12 p23 +p13 p33

High Order Markov process
(two or more steps)

for two steps. In general:

r is the number of states

1 2 3

1

2

3

1 2 3

Weight Transition Matrix.
First order (one step), tree states:

– 47 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

As an underlying relation of music with numbers, patterns, and rule frameworks,
several models for statistic classification, stochastic processes and probability have
been important tools for algorithmic composition. The following is an overview
of five salient models12, their characteristic features in music, and how they could
offer interaction aiming for videogame support:

Markov models (MM)
Designed to describe sequences of events in time, discrete MM calculate the sto-
chastic probability for a future state based on previous states (Norris, 1998). Mostly,
this probability is stored as a weight coming from statistic information for each
transition. Some usual representations are the state transition graph and the tran-
sition matrix.

For each transition, there is a value that represents the likelihood of change from
one state to other. High-order Markov processes are used to calculate more than one
transition or step. There are also hidden Markov models, in which the internal transi-
tions are hidden, but the observable output symbols are visible.

MM (discrete type) have been employed in a variety of music material generation,
including melody construction, harmony progression, and other feature series in sev-
eral Markov orders. From important pioneering works to more recent approaches13,
this model has been one of the most frequently used for music automation and has
consequently been adapted in a wide range of ways to suit different compositional
needs. It has been used primarily in two ways: to reproduce a style by generating
weight tables based on music analysis and to generate new material by designing
transition/state structures. In MM, the occurrence of a transition, or a discrete
step between states, basically generates a non-cero associated weight. Accordingly,
because there is no register for non-existent transitions, the model is unable to pro-
duce events that did not happen in the training set. This characteristic creates dead-
end situations or sub-sequence loop traps, requiring interpolation procedures or
exit algorithms (Nierhaus, 2009). In this model, besides a relatively high randomness
in lower orders and overly restrictive output in higher orders, the resulting struc-
ture similarity to a training corpus can cause a disconnection with other transition
branches and a limited set of results in successive orders (Brooks et al., 1993).

For music generation, weight table design and music parameter assignment are
the key to achieve style. Incidentally, a control system that connects gameplay sit-
uations with weights’ magnitude is able to produce significant changes in music
shape, either gradually or contrastingly.

A-life/evolutionary music
Artificial life (a-life) algorithms use a cooperative network of entities based in char-
acteristic biological phenomena such as birth, movement, growth, reproduction,

– 48 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

and death. A common approach called Cellular Automata (CA) models an n-dimen-
sional-space dynamic system in which cells’ behavior provide generative informa-
tion derived from their activity. Their transitions are executed in discrete steps and
follow local rules. A cell assumes a state determined by its own and neighbors’ states
in the previous round. Transition rules apply for all the cells in the n-dimensional
space, and the possible cell states should include at least “active” and “inactive” –
which can be associated with “alive” and “dead”. Stephen Wolfram, describing theo-
retical background for CA (Wolfram, 2002), identifies four resulting behavior classes:
a simple and homogenous final state, a set of different final states with stable or
periodical structures, a random behavior, and a set of pattern-governed structures.

A usual illustration is Conway’s Game of Life (GoL) (Gardner, 1970) for a 2-dimensional
space. As illustrated in a sequence of steps from left to right in Figure 6, it reaches a
stable pattern in the last two cell configurations (Wolfram’s fourth behavior).

As an example of music implementation, in 1993 Eduardo R. Miranda (Burraston
& Edmonds, 2005; Miranda, 2011) applied CA in CAMUS by assigning events to cell
changes. It employed a GoL rule system for pitch and duration generation, and a
mathematical space as an environment for MIDI channel assignation.

This technique is quite open for rules and assignation which means that the
resulting music shape can be completely different with just a slight change. Multi-
dimensional, high-resolution spaces and special harmony cell distributions can
handle a wider range of possibilities and more interpolated/deeper parameter
changes. Patterns of stable oscillation are frequent, highlighting an evident rhyth-
mical usability. In fact, the “step” property (transition rounds), signals an important
assignment of a time unit for the whole system, which is reflected in a “grid-like”
quantized music. Clusters and discrete glissandos are common musical results,
making it suitable for sound design and retro gaming aesthetics.

Figure No. 6. Horton Conway’s Game of Life. 
Rules: 
· a cell appears in next round if it has three adjacent cells
· a cell with two or three adjacent cells survives in next round
· no cell appears in other cases.
Following the rules for each round in this Cellular Automata, the figure illustrates the outcome of several 
rounds departing from an initial state on the left. For every new round, the position of the current active cells 
is evaluated under the rules, and a new configuration emerges for the next round. The cells can survive and 
reproduce if the conditions are met. In this example, an oscillating sequence of two patterns is reached after a
few rounds, showing one of the most common behaviors (Wolfram, 2002).

– 49 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

Multi-agent models
Agents can be understood as a subcategory of a-life systems since they share para-
digmatic “living” approaches such as the agent’s autonomy, agency, collaborative or
social properties, environment awareness, shared objectives, and individual skills.
In the multi-agent model, individual autonomous algorithms present distinctive
abilities, functions, and goals that are used to interact with other agents or humans
to generate a collaborative result. This system models a “social simulation” where
entities within a context undertake a task benefiting from simultaneity, specialty,
and coordination (Niazi & Hussain, 2011).

In this approach, hierarchical roles as timing, harmonic environment, and tonal
direction are common, and assigning musical dimensions to an agent’s role define
its identity. A multi-agent real-time interactive setup shares several qualities with a
human ensemble such as individual agent skills.

Arne Eigenfeldt elaborates on particular human-like characteristics that give
life and motion to an improvisational rhythmic virtual ensemble. On Kinetic Engine
(Eigenfeldt, 2009), he uses agents for percussion instruments with variables assigned
to features, including confidence, social, commitment, mischievous, and soloistic. These
features are controlled by a propensity level that uses fuzzy logic algorithms (Novák
& Moko, 1999). The feature level configuration in each agent defines its personal-
ity. Agent capabilities such as perception of environmental dynamics (including the
distinction of its own influence), degrees of autonomy, interactive initiative (social),
and responsiveness to stimuli play an important role in collaborative constructions.
This suggests that the multi-agent concept may be a natural fit for autonomous per-

Figure No. 7. Multi-agent models. On the left, a representation of a multi-agent model in which the role of each 
agent is to generate a line for their instrument in coordination and interaction with other agents. On the right, 
a sample agent featuring several parameters (Eigenfeldt, 2009) that can alter their “personality”, thus affect-
ing the global result.

Kick Drum
(director)

HiHat

Snare

Toms

Cymbals a. Downbeat
b. Syncopate
c. Confidence
d. Responsive
e. Social
f. Mischievous

f.b. c. d. e.a.

– 50 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

cussion ensembles since in human contexts, an individual carries out each instru-
mental line in the resulting music14.

This type of algorithm offers the flexibility of real-time interaction with internal
and external events in addition to a set of parameters available for external control
and potential assignment from gameplay.

Among possible issues, the use of a network of entities, in which each one is able
to act with a degree of indeterminacy, tends to multiply the possibilities of events
out of range, context, or control. In other words, multiple agent interactions are
able to unleash an overwhelming cascade of changes in musical features leading
to unexpected results. Therefore, constraints in inter-agent communication lines,
algorithms for “self-control” depending on contextual conditions, and/or environ-
mental limiting thresholds may be useful.

Generative grammars
Originating from linguistic models developed by Noam Chomsky (1956, 1968), this
technique is a functional stratification system used in syntax theories dealing

Figure No. 8. Generative grammars and ATN. (a.) A usual tree representation (Lerdahl and Jackendoff, 1983) 
resulting from the analysis of J.S. Bach’s choral Christus, der ist mein Leben, first phrase. The lower levels 
in the tree represent the final object present in the piece. Going up the tree, hierarchical divisions represent 
several stages of grouping. (b.) In an Augmented Transition Network (ATN) (Cope, 1996), the musical seg-
ments between nodes (arrows) are classified following the rules of SPEAC (Statement, Preparation, Extension, 
Antecedent, and Consequent). These categories also offer a range of possible connections provided by gram-
mar paradigms. Although Cope uses specialized algorithms for transition, segment selection, and jumps, it is
possible to use a Markov weight table to manage concatenation.

b

pickup introduction main motives extensions ornamental signature cadential

P C S E P A E-C

b. Augmented Transition Network

a. Generative Grammars

– 51 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

with formal sentence structures. In language, it involves expressions constituted
by symbol strings and hierarchical rules that bind their structure together as a
given phrase. Following these rules sequentially or recursively generates new string
sequences that are technically correct in the chosen language or context, although
the result is not always semantically meaningful.

In algorithmic composition, this has been a method for hierarchical organiza-
tion of music material based on Western tonal music functionality that is useful to
analyze and model form. Using this precise approach, Fred Lerdahl and Ray Jacken-
doff (1983) developed a system of generative grammars for Western tonal music ref-
erenced recurrently in computational generative grammar studies, including those
mentioned in this section (see Figure 8 a).

An important example is a method called Augmented Transition Networks (ATN)
(Cope, 1996). Based on hierarchical functionality, it is a system of nodes, condition-
als, and subprograms to bind segments and groups of segments sequentially, and
in some cases recurrently. Cope names his structure SPEAC (Statement, Preparation,
Extension, Antecedent, and Consequent). Roles of music snippets are classified in his
example as pickup, introduction, main motives, extensions, ornamental, signature, or caden-
tial (see Figure 8 b). This organization allows modularity and exchange with similar
segments creating convincing combinations and acceptable phrasing. In this tech-
nique, Cope mostly uses existent pieces as the music material to feed the algorithm.
Either composed by himself or by well-known composers, the pieces are initially
processed by segmentation and classification methods. Then, standard music vari-
ation techniques (e.g. transposing, stretching, inverting, and reversing) are applied
to the snippets in order to extend the possibilities, and finally, the ATN algorithm
constructs one or several pieces by concatenation of material.

ATNs, employing harmony as a variable in conjunction with a note-generating
algorithm, easily produce a high percentage of technically correct progressions. This
can govern harmonic sequences or voice leading sections, thus producing phrasing.
Also, when assigned a value related to tension, it has the potential to receive infor-
mation from gameplay, modifying the current harmonic and/or rhythmic behav-
ior. In this case, responsiveness may depend on the time interval between nodes in
a similar way that sample buffers generate latency in digital audio.

Artificial Neural Networks (ANN)/deep learning
Based in the brain neuron model, AAN (also called deep learning15) constitutes a
connectionist subsection of the machine learning algorithms. The ANN model is
designed to reduce the error between a hypothesis16 and the known value for regres-
sion and classification problems17. The process of minimizing the error is regarded
as the learning property in the field of machine learning. The most frequently used

– 52 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

methods to learn in deep neural networks include the cost function and gradient
descent through back propagation18.

The nodes or neurons have an activation function19 (sigmoid, tanh, ReLu, among
others), and the connections are controlled by weights, which are updated by the
gradient descent to minimize the error. Designs with internal or hidden neuron
layers – called deep learning models – are known for the good results in multidimen-
sional classification and regression problems.

ANN models require a training set, which is a database organized to fit the input.
The training may include procedures such as formatting and splitting the dataset
into training, test, and validation pools, feeding the system with a labeled output
for supervised problems or defining the categorical classes for unsupervised learn-
ing20, and determining a number of epochs, batches and other system configura-
tions for processing. Cross-validation sets offer a way to evaluate the efficiency of
the system by comparing known and obtained results.

The most frequently used environments for music are variants of supervised
learning in a classification problem, with a recurrent architecture design (recur-
rent neural networks or RNN). Most networks use music pitches as the main input
and output parameter and check for activation. Some examples include the use of
harmony sequences in a similar way that the model is employed for words or letters

Figure No. 9. Deep neural networks. In the graph, a is the activation function, b is the bias, and w is the weight 
assigned to each connection represented by an arrow. The nodes are circles representing where the product
of the input value and the weight plus the bias is evaluated by the activation function. Whether the value is
passed or transformed depends on the type of activation function. The subscript number is an index node in
its layer, and the superscript number is the layer index for a and b. For w, the superscript is the layer index 
and the subscript couple is the node index and the previous node index, respectively.

Layer 1
Layer 2 (hidden)

Layer 3

a 1

1

a 1

2

b 2

1

b 2

2

b 2

3

b 3

1

a 2

1

a 2

2

a 2

3

a 3

1

w 2

1,1

w2

1,2

w 2

2,1

w 2

3,1

w 2

2,2

w 2

3,2

w 3

1,1

w 3

1,2

w 3

1,3

Out
In

In

– 53 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

in natural language processing. The recurrent model (RNN) learns from sequen-
tial patterns through time, which makes it a good fit for music. Structure design,
parameter formulation, and a significant training set (musical examples belonging
to a style, a genre, or an author) are determinant for the efficiency of the model.

Long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997),
a type of RNN, has a structure that allows past events to influence the hypothesis,
making it particularly effective for sequential series. Its structure allows the use of
weight on significant events in the timeline, making it similar to the way memory
works. It features input and output units with a gate mechanism that learns to filter
irrelevant content (low repetition) and to “forget” when information is outdated.

Google’s Magenta, an open project from the Google Brain team develops machine-
learning systems for music and art creation employing LSTM networks through a
TensorFlow architecture21. Performance-RNN, one of Magenta’s models, uses dynamics
and human timing in the training set (Yamaha e-piano competition dataset), allow-
ing a distinctive performance quality not seen in other models. A version in java
script is available, allowing a trained model to function in a browser demonstrating
how modifications on weights for different notes are easy to apply in real time.

IV. Interactive and modular Algorithmic Music Generator (AMG)

The preceding approaches to music generation feature some level of responsiveness –
with the main mechanism responsible for adaptive music generation in a videogame.
This particular characteristic is the main interest of the present work since it ena-
bles interactivity and then participative story generation through music variation.
Some distinctive properties from each model would fit specific stylistic construc-
tions better and consequently suit – or more easily support – specific game aesthet-
ics. Hence, choosing, tailoring and customizing models based on game dynamics and
needs would be a first step to design a music engine for a particular videogame.

In a more generic approach, using a basic homophonic music standard as a target
and accounting interactive and modular possibilities in its structural design, I pro-
pose the following structure for an AMG:

- A multi-agent system is responsible for both percussion and global music timing,
reacting to variables related to gameplay, movement, and activity. Distinctive
instrumental density, grouping probability, meter and tempo management, and
other pre-designed features can influence and frame stylistic properties. Algo-
rithms manage levels in “responsiveness”, “confidence”, “social”, “commitment”
and “mischievous” – as in Eigenfeldt’s example. The multi-agent network reacts
to gameplay speed and/or density indexes by assigning their values to the param-
eters in the agents’ personality configuration.

- Two pre-trained performance-RNN modules manage the leading voice and bass
lines to take advantage of the creativity and performativity of the model. Train-

– 54 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

ing the model properly ensures stylistic fidelity to the input set, although some
additional heuristics must be applied for quantization and timing. Idiomatic
instrumental possibilities and ranges should be employed on the training corpus.
Interpolation algorithms for weights between pre-trained models potentially pro-
vide refreshing variations and a wider stylistic scope.

- A second or third order Markov model adequately manages instrumental ranges
and voice quantity/distribution for pads/strings (whose role in homophony is mostly
chords and accompaniment). A subset of the sequences produced by the percussion
agents manages the rhythmic properties for this instrumental section. Transition
probabilities in the MM are connected to custom gameplay parameters (e.g. emo-
tional levels). In this instrumental category, intervals of silence and wider dynamic
ranges should be included in the model design to provide phrasing and variety.

- An ATN provides a tonal grid for all pitched instruments. Through generative
grammars and stochastic design, this module drives the AMG harmonic progres-
sion stream. Reaction to game inputs is enabled by including a categorized level
(e.g. emotionality index) for nodes’ possibilities in the ATN design. Therefore,
parameters coming from any interaction in gameplay events, sections, environ-
mental conditions, and occurrence statistics influence the ATN’s decision regard-
ing chords in upcoming nodes. Additionally, selected parameters manage tension
through pitch class addition/subtraction which has the particular effect of incre-
mentally blurring the tonal center. Stochastics design controls a range of variation
for stable long environmental segments.

Figure No. 10. Algorithmic Music Generator (AMG). On the left, the modules in charge of musical event genera-
tion (percussion agents, melody RNN, bass RNN, pad/strings Markov) are interconnected and responding spe-
cifically to timing (red arrow) from the percussion agents. Their stream is shown at the end of black arrows. In 
the middle, an ATN uses generative grammars to switch a harmonic grid to filter pitches coming from the gen-
erators (yellow arrow), and its transitions are activated by the timing. On the right, the game engine provides 
information about the game state to modify the generators and the ATN. Its changes and transitions show up 
in the music stream (red thunder).

Bass RNN

Melody RNN

Game Engine
Music Parameter

Manager

Events
Actions

Environment

Pad/Strings
Markov

TimingPercussion Agents

Augmented
Transition Network

Harmonic
Grid

– 55 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

As a result of the pre-set/recall capabilities on configuration of the AMG parameters
and by executing narrow and/or seeded stochastic distributions, similarity with
low repetition is possible. Through this approach, the AMG is also able to produce
recognizable and almost repetitive gestures for stingers or conclusive sequences.

Quality in performance depends greatly on audio engine management. Employ-
ing stochastic methods such as random walk22 algorithms can potentially “human-
ize” playback. It is achieved by adding the random variation in short ranges to:

- Envelopes in ADSR, volume, effects, and other mixing parameters.
- Timing control, either as a variation in steady-tempo sections or gradual increase/

decrease of global tempo.
- Exclusive instrument parameters such as the modulation type/values of synthe-

sizers or sampler’s playback configuration levels.

Future work includes implementation possibilities in Unreal Engine and Unity (or
any other game development software) and integration with sound design special-
ized applications such as Wwise and FMOD. A useful strategy would be to place the
AMG as a subprogram in the game engine and send music events to a performance
system (e.g. synthesizer, sampler) that belongs to the game editor or to the sound

Figure No. 11. Possible implementation of AMG. A section within the game engine is in charge of sending a 
selection of parameters to the AMG, as shown in figure 10. This section also sends control information to the 
audio engine parameters passing through a Random Walk shaper. This small change in envelopes for effects, 
mix, and instruments adds human qualities to the music result. The stream of music in MIDI reaches the
audio engine and is rendered in real time using the envelope shaper (ADSR + Random walk).

Game Engine

Music/Audio
Parameter
Manager

Events
Actions

Environment

Percussion
Agents

Melody RNN

Bass RNN

Pad/Strings
Markov

Augmented
Transition
Network

Audio
Engine

- Instruments
- Effects
- Mix

ADSR + Random Walk

– 56 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

design soundbank23. This configuration makes the algorithmic generation independ-
ent of the built audio engine.

AMG development should usually involve a pilot version able to receive controls
from the game engine. This version ideally is able to test all the parameters coming
from gameplay in real time. A pilot designed through third party programming
environments (Max MSP/Pd, ChuK, CSound, SuperCollider, etc.) has the advantage
of fast structural setting and modular audio implementation. An AMG designed, or
transcoded and tested, into the native scripting language of the game engine (usu-
ally C++ or C#) should be ready for a built game.

V. Conclusion and final thoughts

The concept of active music generation not only fits into interactive paradigms of
videogames, but potentially also benefits other audiovisual or artistic real-time
participatory setups. The intended utility is to support a multi-linear narrative
interactively and adaptively and as a result extend the output material while pre-
serving aesthetics. The stylistic capabilities of an AMG are determined in general
by algorithmic aesthetic decisions and/or by feature learning from a preexistent
musical corpus.

To some extent, this tool may be able to generate material even if the human
input (either musical or compositional) is reduced or eliminated. In this case, if the
machine performs without any guidelines such as a training set, a style-matching
parameter setup, or an explicit musical intention, the output will include a large
number of random events, resulting in an indeterminate emotional support. Curi-
ously, the act of reducing human intervention or operation to denote a lack of direc-
tion could be perceived as a valid aesthetic decision which intrinsically has human
origin.

Automatic systems are replacing humans in methodical tasks, but in the field of
art production, not only are the origins and primal ideas mostly human (or human
+ machine), but they are also assessed by humans. This raises an ominous inquiry
about the nature of authorship and may need further legal definitions into licens-
ing schemes.

Arguably, formulaic music making by humans or machines has been around for
a long time. Styles, genres, and currents have had influential authors and impor-
tant contributors that rarely create completely new material. An AMG constitutes
a streamlined way to perform not only style replication, but also development and
variation featuring real-time participation. The idea of a machine producing music
material interactively is an opportunity for involvement, re-creation, appropriation
and even democratization of art generation processes beyond videogames with the
potential of nurturing a wide range of aesthetic auditory experiences.

– 57 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

References
Ames, C. (1987). Automated Composition in Retrospect: 1956-1986. Leonardo, 20(2), 169-185. https://

doi.org/10.2307/1578334
Ames, C. (1989). The Markov Process as a Compositional Model: A Survey and Tutorial. Leonardo,

22(2), 175-187.
Brent, R. (2007). Some long-period random number generators using shifts and xors. ANZIAM  J. 

ANZIAM Journal, 48, C188–C202.
Brooks, F., Hopkins, A., Neumann, P., Wright, W. (1993). “An experiment in musical composition.”

In S.M. Schwanauer, D.A. Levitt (Eds.) Machine Models of Music. MIT Press, Cambridge, Mass. ISBN
0-262-19319-1

Burraston, D., & Edmonds, E. (2005). Cellular automata in generative electronic music and sonic art:
a historical and technical review. Digital Creativity, 16(3), 165-185.

Chomsky, N. (1956). Three models for the description of language. New York.
Chomsky, N. (1968). Syntactic structures. The Hague: Mouton.
Cope, D. (1996). Experiments in musical intelligence. Madison, WI: A-R Editions.
Cope, D. (2008). Hidden structure: music analysis using computers. Middleton, WI: A-R Editions.
Cope, D. (2000). The algorithmic composer. Madison, WI: A-R Editions.
Eigenfeldt, A. (2009). The Evolution of Evolutionary Software: Intelligent Rhythm Generation in

Kinetic Engine. Proceedings of EvoMusart 09 – European Conference on Evolutionary Computing, Tubin-
gen, Germany, pp. 498-507. Berlin: Springer.

Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire
game “live.” Scientific American, 223, October, 1970.

Hiller, L., & Isaacson L. Experimental Music (New York: McGraw-Hill, 1959; re-printed Greenwood
Press, 1979)

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-
1780.

Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, Mass.: MIT Press.
Miranda, E. (Ed.). (2011). A-life for music: music and computer models of living systems. Middleton, WI: A-R

Editions.
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning. Cambridge, MA:

MIT Press.
Niazi, M., & Hussain, A. (2011). Agent-based computing from multi-agent systems to agent-based

models: a visual survey. Scientometrics, 89(2), 479-499. https://doi.org/10.1007/s11192-011-0468-9
Nierhaus, G. (2009). Algorithmic composition: paradigms of automated music generation. Wien; New York:

Springer. Retrieved from http://dx.doi.org/10.1007/978-3-211-75540-2
Norris, J. (1998). Markov chains (1st public edition). Cambridge, UK; New York: Cambridge University

Press.
Novák, V., Perfilieva, I., & Moko, J. (1999). Mathematical principles of fuzzy logic. Boston: Kluwer Aca-

demic.
Pearson, K. (1905). “The Problem of the Random Walk”. Nature. 72 (1865): 294. doi:10.1038/072294b0
Sweet, M. (2015). Writing interactive music for video games: A composer’s guide. Upper Saddle River, NJ;

Boston; Indianapolis; San Francisco; New York; Toronto; Montreal; London; Munich; Paris;
Madrid; Cape Town; Sydney; Tokyo; Singapore; Mexico City: Addison-Wesley.

von Neumann, J. Various techniques used in connection with random digits. A. Householder, G. For-
sythe, and H. Germond (eds.), Monte Carlo Method, National Bureau of Standards Applied Math-
ematics Series, 12 (Washington, D.C.: U.S. Government Printing Office, 1951): 36-38.

Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.
Zicarelli, D. (1987). M and Jam Factory. Computer  Music  Journal, 11(4), 13-29. https://doi.

org/10.2307/3680237

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1038%2F072294b0

– 58 –

 SoundEffects | vol. 9 | no. 1 | 2020

 issn 1904-500X

Lopez: Algorithmic interactive music generation in …

Notes
1 Bear McCreary’s video game credits include Sony’s Socom 4: U.S. Navy Seals, Capcom’s Dark Void,

and the innovative video game/television hybrid Defiance. Other important sound tracks
include Battlestar Galactica, Da Vinci’s Demons, Marvel’s Agents of S.H.I.E.L.D. and The Walking Dead.

2 Nishikado, Tomohiro. Taito, Japan, 1978.
3 Among others, the two entries by Karen Collins, From Pac-Man to pop music: Interactive audio in 

games and new media, 2008, and Playing with sound: A theory of interacting with sound and music in
video games, 2013. In the first, some approaches and theories about non-linear music compo-
sition, indeterminate audio playback, and interactive or adaptive music for videogames are
disclosed. In the second, the author elaborates on the concepts and theories involving sound
and image in an interactive scheme such as synchresis, kinesonic congruence, players’ audi-
tion, co-creativity and performance among others.

4 Especially, in the book Designing Sound, Andy Farnell (2010) explains and studies a wide range
of sound-design techniques resulting from virtual acoustic conditions, similarly to how phys-
ics drive visual rendering in videogames.

5 That is, if the playback system acts as a synthesizer/sampler module and the stream of
events feature Midi-style information (pitch, duration and intensity)

6 https://intermorphic.com/
7 https://www.ampermusic.com/
8 https://www.aiva.ai/engine/
9 https://melodrive.com/
10 Algorithmic generation of random sequences by a deterministic process through functions

and mathematical operations.
11 Most of the pseudo-random digit generators re-start the sequence after a number of digits.

This is called the period (Brent, R.P., 2007), and tends to be very long in order to hide any
predictable structure.

12 These models constitute the most important field of study in the large field of algorithmic
composition, generative music, and artificial intelligence in the last thirty years. Although
some of them are far older, the possibilities offered by new hardware produced new results
leading to recent approaches and challenges of a higher level such as stylistic and perfor-
mance generation, genre reproduction, self-similarity, and motivic development among
many others.

13 Among many, Xenakis’ Analogique A (1958), in which MM are employed for density sequences.
Also, the previously mentioned Illiac Suite (Hiller, 1957) regarded as the first work of comput-
er-assisted composition. A more recent example is J. Chadabe’s M and Jam Factory (Zicarelli,
1987), a software for interactive production of compositional material. A longer list of works
using Markov models can be found in “The Markov Process as Compositional Model” (Ames,
1989).

14 In a drum set in which a single performer is assigned to a range of percussion instruments,
the idea of including idiomatic limitations such as the possibility of maximal simultaneous
hits may also be incorporated.

15 Deep learning refers to multi-layer neural networks. In this type of network, there are three
types of layer: input, hidden, and output layer. The hidden layers are composed of nodes
that connect input and output layers internally (Mohri & Talwalkar, 2012). The number of
neurons and hidden layers is proportional to the capacity of the model to calculate more
convoluted (and computationally expensive) hypothetical curves.

16 Hypothesis in machine learning refers to the inferred value that the model outputs based on
training (Mohri & Talwalkar, 2012).

– 59 – issn 1904-500X

 SoundEffects | vol. 9 | no. 1 | 2020Lopez: Algorithmic interactive music generation in …

17 In regression problems, the model predicts a value that normally comes from a continuous
function generated in the learning process. In classification problems, the model outputs a
label or a category for each input.

18 The cost function calculates the distance between the hypothesis and the expected value,
and the back propagation adjusts the weights, starting with the output nodes and going
back to the input nodes. The gradient descent is a recurrent function that finds a better
value on each iteration (Mohri & Talwalkar, 2012).

19 The activation function sends a value to the next layer depending on the input weight and
the type of function. It is basically a decision taken by the node, and the type of output can
be a Boolean (activated/deactivated) or a proportional value between 0 and 1.

20 Supervised problems use a labeled training set or a target value that the model uses for
training. On the other hand, unsupervised problems allow the model to produce the labels
from an unlabeled training set.

21 https://magenta.tensorflow.org/
22 The random walk is a path of random sequential steps. It was described first as “The prob-

lem of the Random Walk” (Pearson, 1905).
23 The soundbank refers to a built audio section that encompasses not only the audio samples,

but also the algorithms that activate and manage them.

	_GoBack
	_GoBack
	result_box1
	result_box3
	result_box
	result_box5
	result_box8
	result_box10
	__DdeLink__1483_2923978664
	OLE_LINK68
	OLE_LINK69
	_GoBack
	_GoBack

